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We study the generalized Abel tramsform for SL(2,8) in the case of
equal left and right, fixed K-type. We rewrite this transform as an inte-
gral transform of classical type. Then it involves a double integration with
kernel expressed in terms of a Chebyshev polynomial of the second kind. We
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for SL(2,C) by a global approach.
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0. INTRODUCTION

In earlier papers [13], [14] the second author formulated a program for
a global approach to the representation theory of noncompact semisimple Lie
groups G and he carried it out for SL(2,R) . "Global" means that no use of
the Lie algebra and universal enveloping algebra of G is made. Instead, the
analysis is based on a more or less explicit knowledge of the canonical
matrix elements of the principal series representations of G with respect
to a K-basis, K being a maximal compact subgroup of G. Furthermore, in the
case of SL(2,R) it turned out that the subquotient theorem (i.e. the
Naimark equivalence of K-finite irreducible representations of G to sub-
quotients of principal series representations) can be proved by use of the
generalized Abel transform.

It is the purpose of the present paper to give a global proof of the
subquotient theorem for G = SL(2,C) by use of the generalized Abel trans-—
form. Let I:,G(G) be the commutative topological convolution algebra of K-
central C ~functions with compact support on G which behave as the irre-
ducible representation § of K under left or right action of K. Then the
generalized Abel transform is an algebra is:morphism of I:,G(G) onto a con-~
volution algebra of certain vector-valued C -functions with compact support
on R. The subquotient theorem. follows from a knowledge of all continuous
characters on this image algebra. So we have to know this image algebra.
This method was earlier used by NAIMARK [19] and the characterization of
the image algebra follows from WANG's [26] Paley-Wiener theorem. However,
we will give a probably new proof with side results of independent interest.
Namely, we write the generalized Abel transform as an integral transform of

"classical" type and we obtain the inversion formula in a similar form:

21
0.1) F(t,t) = (21r)_I J J £(p,w) ¢
0 t

ch t sh t . .
'UZI’. (m cos¢ cosT + o sing sint)2sh2w d¢ dw,
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(0.2) f(p,w) = (4rsh2w) J J \ + ——§> F(t,t)-
0w 3T 3t

ch t sh t . .
. Uzl(ch o COs¢ cost + PN sing sxnr)dt dt.

In this integral transform pair, £ is in {0,&,1,%,...}, Uyp is a Chebyshev
polynomial of the second kind, and f and F are C -functions with compact sup-—
port, £(¥,x) and F(y,x) both having the form
% c (x)e_zimw,
me{~€,-f+1,...,8} ©
with certain additional conditions.

Let us summarize the contents of the paper. In section 1 we give basic
results about the global approach to finding irreducible subquotients and
proving Naimark relatedness. Section 2 contains general theorems for the
generalized Abel transform on a semisimple Lie group, section 3 a discussion
of earlier results for SL(2,E) and SL(2,R) . Section 4 gives preliminaries
on SL(2,C) and the representation theory of SU(2) which will be needed. The
main work of the paper is done in sections 5,6,7: the derivation of (0.1)
and an integral representation for related spherical functioms of type § in
§5, the derivation of the inversion formula (0.2) (also leading to a mew
proof of the Plancherel formula for SL(2,€)) in §6, a characterization of
the image algebra in §7. Finally, the subquotient theorem is derived in §8

and we state without proof some further results in §9.

Notation. rep means representation,

Zrr. means irreducible.
1. IRREDUCIBLE SUBQUOTIENTS, NATMARK RELATEDNESS AND THE ALGEBRAS Ic G(G)
’

In this section we collect some results which are relevant for the
global approach to the representation theory of a general locally compact
group.

Let G be a locally compact group satisfying the second axiom of count-
ability and let K be a compact subgroup of G. Let Tt be a K-unitary Hilbert

rep of G, i.e. a strongly continuous rep t of G on a separable Hilbert
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space H(1) such that 1|K is a unitary rep of K on H(t). Then
\
(r.n |, = e m

where the multiplicity mg equals 0,1,2,... or w (countably infinite). Let

Ha(T) be the closed subspace of H(t) which is the representation space of

s § in (1.1) and let P6

For v,8 in M(1) define the canonical matrix elements TYfS of T:

be the orthogonal projection of H(t) onto HG (1) .

(1.2) TY‘S(g) = PYT(g) |H5(T), g e G.

Then Tvé(g) is a linear operator of H6(T) to Hy(‘r) . The operator t(g) can be
written as a (usually infinite) block matrix with blocks Tvé(g) . Define the
K-content M(t) of T by ¢

(1.3) M(t) := {6 ¢ R | m, # O}.

The rep 7 is called K-finite if m < @ for all § in K and 7 is called K-

miltiplicity free if m, = 0 or 1 for all § in K.

s

DEFINITION 1.1. Let T be a Hilbert rep of G, HO a closed subspace of H(t)
and P0 the orthogonal projection of H(t) onto fy. Let ‘ro(g) 1= Por(g) IH

. .0
(geG). 1If 'ro(g] gz) = To(gl)ro(gz) (g],gzeG) then Tg is called a subquotient
rep of T on HO.

THEOREM 1.2 (c£.[13,§3.2]1). Let 1 be a K-multiplicity free rep of G. For
Y,8 in M(x) write y ~ 8 Lff e # 0 and oy # 0. Then ~ is an equivalence
relation on M(1) and g is an irr. subquotient rep of t iff Tol = & Y
for some § in M(1). Ko oyly~s

DEFINITION 1.3. Two Hilbert reps ¢ and T of G are called Naimark related if
there is a closed (possibly unbounded) injective linear operator A of H(g)
to H(t) with domain D(A) dense in H(g) and range R(A) dense in H(t) such

that D(A) is o-invariant and Ac(g)v = t(g)Av(veD(A),geG) . Notation: o a t
or o & 1,



- 409 -

Naimark relatedness is an equivalence relation (called Naimark equiv—
alence) on the class of K-finite Hilbert reps of G (cf.[13, Theorem 4.4]).

LEMMA 1.4. Let o and t be irr. Hilbert reps of G. If, for certain nonzero v
in H(o) and w in H(1), (o(g)v,v) = (1(g)w,w) for all g in G, then o ~T.

PROOF. Define ;(g) := (c(g—l))*(geG), and similarly ;(g) . Then o and 7 are
also irr. Hilbert reps of G. Define a linear operator A with
D(a) := Span{d(g)v[g € G} and R(A)

Span{t(g)w|g ¢ G} by
n n

for arbitrary n in W, LTEERETL inC and Byser B in G. By irreducibility
of ¢ and 1, D(A) is dense in H(o) and R(A) is demse in H(T). For the proof

that A is one-valued and injective note that the following equalities are
equivalent:

n
.o(g.)v =0
z a;0(g)v = 0,

j=1
(3 ~

X a.o(g.)v,c(g)v) =0 VgegG,
\j=l J J

¢ -1
( 5 a.o0(g g.)v,v> =0 Vg € G,
j=1 J 1

2 -1
( f a.1(g g.)w,w) =0 Vg € G,

n ~
( Y oa.t(g)w,T(g)w) =0 Vge G,
j=1 J ]

n

.1(g.)w = 0.
jzl os(gy)

Clearly, D(A) is o-invariant and Ac(g) = t(g)A on D(G) for g in G. For the
proof that the closure A of A is one-valued and injective let

nﬁk)
P e R
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n(k)
_g uj,k T(gj’k)w +~w0 as k + =,
=1
Then Vo = 0 iff Vg = 0, by a similar argument as above. Finally apply [13,

Lemma 4.3]. 0O

THEOREM 1.5. Let o and t be irr. K-unitary reps and let some § in K have
multiplicity 1 in both o and t. Then o and 1t are Naimark rvelated Zff

(1.4) tr 066(3) = tr Tsa(g) for all g in G.

PROOF. If o &~ t and IG: HS(U) > HG(T) is a K-intertwining isometry then
1..(g) =10 (g)I_1
88 6§ 88 [

(c£.[13, Theorem 4.5]). This proves (1.4). Conversely assume (1.4) and

choose orthonormal bases € seeese for HG(T) and fl""’fda for Hd(T) such

dg
that

Sij(k) = (o(k)ej,ei) = (r(k)fj,fi), k € K.

In (1.4) replace g by gk(geG,keK). Then we obtain:

‘2‘5

ds
7 ﬁij(k) (c(g)ei,ej) = 1.4

. éij(k) (r(g)fi,fj).

Hence (o(g)el,e]) = (r(g)f],f])(geG) and ¢ & 7 by Lemma 1.4. [

The spaces C(G) and, if G is a Lie group, C:(G) are algebras under con-
volution and, provided with the usual inductive limit topology, they become
topological algebras. Consider the following closed subalgebras

o ~ o had 00
Ic(G), IC’G(G)(SEK) of Cc<G) and IC(G), Ic,G(G)(GEK) of CC(G):

.5 190 = e cP©@leea™ - (@, 86 k< B,

(1.6) 12‘:’%(6) = {f ¢ Ii”) (G)ldGJ’ £(gk)xg(k)dk = £(g), g € G, k € K}.
K
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()

The present definition of I( )(G) corresponds to the definition of 1.y

3}
’
(6 being contragredient to 6) in [13, p.43]. Here we follow the definition

in WARNER [27,84,5.11,

PROPOSITION 1.6. (cf. WARNER [27, Theor. 6.1.1.2, Prop. 6.1.1.61)

. Let

A

8 € K and let the algebra LN (S be commutative. Let t be an irr. K-uni-
H

tary rep of G in which § oceurs with finite nonzero multiplicity m.. Then
mg = | and the linear functional

a.mn £ dy f f(g)tr T,4(8)dg
G

18 a nomgero continuous character on I 5(G). Furthermore, this character
E]
completely determines trtgs () as a funetion on G.

PROOF, By (3, Lemma 5,1] mg =1 iff the rep 1 of

(1.8) K" = {(,k) € G x K | k ¢ K}

v
has multiplicity 1 in the rep T ® § of G x K, By restriction to G x {e} the

algebra CC(K*\GXK/K*) is mapped isomorphically onto Ic(G). Under this map-
ping the algebra

A= {f e ¢ (KGR |

d f f(g,k)xé(k-l)dk = £(g,e),8 € G,k ¢ K}
K
corresponds to Ic’ s G).
For f in cc(cxx) define f# by

# -1
£ (g,k) := ds I f [ f(k]gkz,klkk3k2) Xﬁ(kB )dkl dk2 dky, g € G,
KKK
, ke K,

Then £ = f# is a prOJectlon o:E c (GXK) onto A, Let P be the orthogonal peo-
jection of H(rﬁd) onto H (TM) One easily verlfles that, for v in H (t®8),
f e CC(GXK).
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(18d) (£#) v = P](rgg)(f) v.

v v
By irreducibility of T, (T@d)(Cc(GXK)) v is a dense subspace of H(T®¢).

v
Hence, since Hl(r®6) is finite dimensional,
v v v
(1@8)(A) v = Pl(’l'@(S) (Cc(GxK)) v = Hl('r®6).

v v
Thus T ® g is an irr. rep of the commutative algebra A on HI(T&S), so HI(TGNS)
has dimension 1.
For the proof of the second statement note that, for f in CC(GXK) and
v .
v in H](Tad) with vl = 1, we have
v -
f I £(g,k) ((x®8) (g,k)v,v)dg dk = ddl J £#(g,e) tr Ty (g)dg..
G K

Finally the third statement follows from the observation that

J f(g) tr Tad(g)dg = d; J' [ (If(klgkzk;l))(5(k2)dk1 dkz]trrd‘s(g)dg,
G ¢ KK
f e Cc(G)' a

The function tr T&S(') is called a spherical trace function of type §.
The theory of these functions goes back to GODEMENT [5].

COROLLARY 1.7. Let 6 « K and let IC’G(G) be commutative. Let ¢ and 1t be irr.
K-unitary reps of G in which & has finite nonzero multiplicity. Then ¢ & T
Lff the corresponding characters on Ic’a(G) (or T‘:,G(G) if G is a Lie group)
defined by (1.7) coincide.

PROOF. Use Theorem 1.5 and Prop. 1.6, [

The pair (G,K) is called a Gelfand pair if the algebra CC(K\G(K) is

commutative.

COROLLARY 1.8. If (GXK,K*) is a Gelfand pair then each irr. K~-finite Hilbert
rep of G is K-multiplicity free,
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PROOF. Use Prop. 1.6 and the correspondence between CC(K*\G*K/K*) and Ic(G)'
0

2. THE GENERALIZED ABEL TRANSFORM

Let us restrict attention now to the case that G is a noncompact con-
nected real semisimple Lie group with finite center and that K is a maximal
compact subgroup of G. Choose subgroups A and N of G such that G = KAN is

an Iwasawa decomposition of G and let g in G be accordingly factorized as

@2.1) g = u(ee ®n(g),

where H(g) € a, the Lie algebra of A, Let M be the centralizer of A in K.
For £ in M and A in a. (the complex linear dual of a) we define the princi-
Fal series rep “E ) as the rep of G induced by the rep

man » ek(log a) E(m), me M, a€ A, ne N,

of the subgroup MAN of G. Let n be the Lie algebra of N and let p in a be
defined by p(H) := }tr(adH| W He a. In the compact picture the rep LI
is realized on the Hilbert space L (K3H(E)) con31st1ng of all H(E) -valued
L2 ~ functions f on K such that f(km) E(m )f(k) k € K, m € M, Then

-1
(2.2) (rp (@D @ = §PVRE Wy,

,eeG, kek, fe Lé(K;H(E)).

The rep TE A is a K~finite Hilbert rep of G.
H

We would like to attempt a global approach to HARISH-CHANDRA's [7, The-
orem 4], [8, Theorem 4] subquotient theorem:

THEOREM 2.1. Every K-finite ivr. Hilbert vep of G is Naimark equivalent to
some irr. subquotient rep of some prinecipal series rep.

Choose a Haar measure dn on N, For f in I: 6(G) (6¢K) define
’
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(2.3) Ff(k,a) i= ep(log a) J f(kan)dn, k € K, a € A,
N
(2.4) Fi(a) := o (108 @) J J Efkan) 506 i dp =
KN
v 1
§ (k )dk, a € A,

v 0 oo
(2.5) Fe(k,a) = dg Z_ aij (k) (Ff(a))ji,f € IC’S(G).
1,j=1
The transform £ »—Ff or £ » Fg
WARNER [27, §6.2.2]).

v
From now on assume that ¢ is M-multiplicity free. Then § is also M-mul-

is called the generalized Abel transform (cf.

v v
tiplicity free. Let MM(G) denote the M-content of §, Note that
8 s -1 ¥ §,. X, -1
Ff(a) = Ff(mam )y = S(m)Ff(a)é(m ), a€ A, me M,
Hence,
Fp@), = Em FEe@), | n@ ), & e hy@)
£ £,1 f E,n >

(where (Fg(a))E n is the matrix block of Fg(a) corresponding to (&,n)).
v t]

Since § is M-multiplicity free, this implies

0 if £ #n,

s
(F.(a)) = {
£7778,n Fi’e(a).id if £ =,

v oo
for certain functions Fi E(EEMM(G)) in Cc(A)‘ Combining this with (2.5) we
]
get

(2.6) F.(k,a) = d )
£ 8 gell,

It can easily be proved that forfinI: G(G) we have a similar formula: there
bl

inCZ(A) such that

v S =)
g) tr Ggg(k)Ff,g(a)’ fe IC,S(G)'

exist functions £

£
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v
(2.7) f(k]akz) =d tr Ggg(kzkl)fg(a)’ k]’ kZ € K, a € A,

5o by
£eMy, (8)
Note that f and Ff(feI: G(G)) are completely determined by their restric-
’
tions to M x A,
Choose a Haar measure da on A and normalize the Haar measure dg on G

such that

(2.8) f £(g)dg £(kan)e? 198 D gy 4o an, £ ¢ c_(G).
G KxAXN
THEOREM 2.2, Let 8 ¢ K such that 6 is M-multiplicity free. Then the trans—

form

@1,

Y 1® ...
£~ {Ff,ﬁ}géMM(\é) .Ic’6 > GC(A,(B

has the following properties:
(i) it is continuous;
(ii) <t 1s injective if G is a linear Lie group;

(iii) <t e an algebra homomorphism, Z.e.

[ $ [} - Y
(2.9) Ffl*fz 5(a) = j Ff],g(al)Ffz,E(al a)dal, £ e MM(6),
4 A

fl’ f2 € Ic,é(G);
. . < . % *
(iv) for each £ in IC’S(G), £ in MM(S) and ) in a, wve have

-1 § A(L
(2.10) d6 I f(g)tr "g,A;G,d(g)dg = J Ff’g(a)e (log a)cla;
A
(v) I: 6(G) i8 a commutative algebra.
?

PROOF. The proof of (i) is straightgorward. See [13, Theorem 5.171for the
proof of (ii) and WARNER [27, §6.2.2] for the proof of (iii), Combination of
(ii) and (iii) proves (v). Let us prove (iv), From WALLACH [25, Lemma
8.3.11] we have ’
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...1 *
ng’}\(g) = ("g,—i(g )
hence

-1
(%) tr “5,A;6,6(g) = tr “g,—x;d,d(g ).

v .
Choose an orthonormal basis € seeesy of H(§) such that e ,...;ey 1S anor-

v . _
thonormal basis of #,,(8). Realize Te 5 On the Hilbert space H(ﬂg’x =
E]

= LZ(K;H(E)). Then the vector-valued functions fi(i=1,...,d6) defined by

dG % \'4 v
£, (k) = (EE) (Gil(k),...,aidg(k)), k €K,

form an orthonormal basis for Ha(“g >\). It follows from (2.2) that
i
ds
iZ) (WE,X(g)fi’fi) =
d, ds dg -l v "
=8 §o| e eIBE R ¥ ) 8, k) dk.
d_ .t & ij ij
£ i=1 j=1
K
Hence
(2.11) tr "E,A;G,G(g) =

, -1
; -1 - -1\ -
; = dyd J o (PHOE(E K)o 8¢ ((ule Loy ey k.

Combination of (*) and (2.11) yields:
-1
dg I f(g)tr wg,x;a,s(g)dg =

- o [ f £(g)e PPIEER) 85 (< Mu(gh))ag k.
G K
Next make the transformation of variables g = gk_l and substitute (2.8)
the right hand side:

LES of (2.10) = dgl Jf f £ (kan) tr GEE(k)e(A+p)1°g 34k da dn.
KAN

into
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In view of (2.4) this yields (2.10). 0O

CORALLARY 2.3. If (®RM,M') s a Gelfand pair then (GxK,K') is a Gelfand pair,
6(G) 18 a commutative algebra and § is M~multiplicity free for each § in
K, and each irr. K~finite Hilbert rep of G is K~multiplicity free.

PROOF. Use Cor. 1.8 and Theorem 2.2 (v). [J

In the following examples (KXM,M*) and (hence) (GXK,K*) are Gelfand
pairs:

G K M
SL(2,R) S0(2) o(n
SL(2,C) SU(2) u(n)
SO(n,1) S0 (n) S0(n-1) .
SU° (n, 1) U(n) U(n~1) ‘

Note that the cases G = SL(2,R), SO_(2,1), SU(1,1) are locally isomorphic
and also G = SL(2,€), SO°(3,1). Since, under the assumption that (GXK,K*)
is a Gelfand pair, each finite—dimensional irr. rep of G is K~multiplicity
free, it follows from KRAMER [17] that almost all cases with (KXM,M*)
being a simple linear Lie group occur is the above table,

We can now formulate the program for a global approach to Harish-
Chandra's subquotient theorem:

(a) Let § e K such that 6 is M~multiplicity free. Let A be the image of
G(G) under f ~ {Ff E} and provide A with the topology which makes
thls transform an homeomorphlsm. Determlne A completely, also topolog-

ically, and prove that each continuous character on A6 has the form

F ~ J F\,(a1)e>"(lOg a)da
A 13
for some £ in MM(ﬁ), X in az, Then in view of (2.10) and Cor. 1.7, we
conclude that each irr. K-unitary rep T in which § has finite nonzero

multiplicity is Naimark related to an irr. subquotient rep (namely the
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one containing 8) of some ﬂg e
ki

(b) In particular, study flMK*FfIMxA (fEIc,G(G)) as a "classical" inte%ral
transform (i.e., as an integral transform given in analytic form without

group variables) and determine its inversion formula.

Clearly, 6 is M-multiplicity free if & = I (the spherical case). Then
I:,S(G) = C:(KXG/K). Its image under the generalized Abel transform is known
by GANGOLLI's [3] Paley-Wiener theorem: the space of all Weyl group invari-
ant C -functions on A with compact support. However, part (b) of the above
program in the spherical case has been done only in the rank one case. Then
f o Ff can be written as a Weyl type fractional integral transform or a com-
position of two such transforms (cf. KOORNWINDER [111).

The above programs has been completed for all § in the case G = SL(2,R)

t
(cf. KOORNWINDER [13], [14], TAKAHASHI [207). Then A = {a =€

t 0 &7t
K =4y = (08 © ~-sin 6
8 ° sin 6 cos 8/f°

K consists of the reps én(nez), where Gn(ue) 1= elne

. In considering the

transform f H-Ff fo:rfin.I: s (G), we can testrict f and Ff to A and we ob-
>“n

tain
(-]

(2.12) T (a,) = f f(aw)TIn]<%E——:7>(ch2w—ch2 )'5sh2w dw,
t

where T]nl is the Chebyshev polynomial of degree |nl|:
(2.13) Tn(cose) := cos n 8.

The inversion formula to (2.12) is

©

__ -1 ch tY/ .2 2 \-}
(2.14) f(aw) T j Ff(at)Tlnl(EF—5)<Ch t-ch w) dw,
w
The correspond f+ f], & F_1i i ®
pondences . lA £ identify the spaces Ic,d @), Deven (R)
and Deven (R) , respectively, with each other. Note that in"the spherical

case (n=0) the pair (2.12), (2.14) becomes.the classical Abel transform to~

gether with its inversion formula (cf. GODEMENT [6]). There are three dif-
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ferent proofs that (2.14) is the inversion formula to (2.12).
(i) by Mellin transform techniques (cf. MATSUSHITA [181);

(ii) by specializing the inversion formula for the Euclidean Radon trans-—

form on R” to functions which behave according to rep Gn of S0(2)(cf.
DEANS [21);

(iii) by using generalized fractional integrals (cf. KOORNWINDER [13, §5.91).

3. SL(2,C), DISCUSSION OF EARLIER RESULTS

Let us now try to deal with the generalized Abel transform for SL(2,C)
in the same spirit as for SL(2,R) above. A global approach to the represen-
tation theory of SL(2,C) can already be found in NAIMARK [19]. He determined
irreducibility properties of principal series reps by using Theorem 1.2 (cf.
[19, Ch. 3, §9, no. 15]) and he used the generalized Abel transform for
proving the subquotient theorem 2.1 (ibidem, no. 16). (In fact, he consid-
ered the generalized Abel transform not on the algebras I: 6(G) but on cer-
tain algebras denoted by X? which are isomorphic to them (ibidem, no. 6).)
However, there are certain unsatisfactory points in his approach: (i) the
formula for the generalized Abel transform is not very explicit (cf. ibidem,
no. 10, formula (1)), with integration variables defined in an implicit way;
(ii) the inversion formula (ibidem, no. 10, formula (9)) is derived by using
the Plancherel formula; (iii) the image under the generalized Abel transform
is not completely characterized (ibidem, no. 10, IV) but a subalgebra of the
image is obtained which is big enough to prove that the characters on it
have the desired form., See BRUMMELHUIS [1] for a more detailed discussion of
Naimark's approach.

KOSTERS [16] studied irreducibility, Naimark equivalence and unitariza-
bility for subquotients of the principal series of SL(2,€) by using the
global methods developed in [13], but he did not give a global approach to
the subquotient theorem 2.1.

Finally, a helpful reference to us was WANG [26], who derived a Paley-
Wiener theorem characterizing the image of the algebras I:’S(SL(Z,G)) under
the group Fourier transform. Indeed, his result is equivalent to character-

izing the image under the generalized Abel transform.
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4, SL(2,C), PRELIMINARIES

Let us fix an Iwasawa decomposition G = KAN for G = SL(2,C) with

a B
(4.1) K = SU(2) = {k = ( _) | o,8 ¢ ¢,lal” + 1812 = 1},
o,B B a
et 0 : '
(4.2) A= {at = ( _t) | te m}, _
0 e
1 x+iy }
= = . , R .
(4.3) N {nx+iy (0 | ) | %,y €
Then
ei¢ 0
(4.4) M={m :=( _.>|0$¢<21r}.
9 0 e 1¢

We will also use special elements of K given by

cos 8 -sin6
(4.5) ug i= ( >,.
sin® cos®

K consists of the reps ’fe (£=0,%,1,0s.).0f dimension 2¢+ 1. A model for the
representation space of Tl is given by the space H v of hompogeneous polyno—
mials of degree 2£ in two complex variables with orthonormal basis consist—

ing of the functioms wﬁ (n==L,~L+1,..0,4):

i
(4.6) wﬁ(x’y) = (£2:En> X«E-ny.hn.
Then
4.7) (Tl'(kq,e)f)(x,y) 1= £ (ox-By,Bx+ay)

defines an irr. unitary rep of K on HL‘ Note that the orthonormal basis is
en M-basis:

,[_ -2in¢ ya
@8 trmyele L

Let
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YA RN A A
(4.9) tn @) 3= (T (L]

denote the matrix elements of Tz(k) with respect to this basis. From (4.6),

(4.7) and (4.9) one obtains a gemerating function for these matrix elements:

3 _ -
(4.10) ( Z_ﬁ) (aX*By)Zm(6x+ay)£m =

£ }
£ (24\? f-m_L+m
m}_y_ tmn(k“,5>\£'m> oy

From this one can obtain an explicit expression for tﬁn(k) in terms of
Jacobi polynomials A more detailed account of the representation theory of
SU(2) is, for instance, given in VILENKIN [24, Ch. III],

We will need two special functions associated with the reps TL' First,

for the character Xp of T£ we have

(4.11) xz(ka B) = Uyp(Re @),
where

_ sin(n+1)¢
(4.12) U (cos ¢) := —in s

is the Chebyshev polyromial of the second kind. Next, for the diagonal ma-

trix element tjj(k) we have:

£ .
CRCTE 7O R S NIC
where
Gaw Ry (et e p (01D (g2 el d rede

and P(a B)(x) denotes a Jacobi polynom1a1 R (x+1y) is an orthogonal poly-
nom1a1 in the two variables x,y, a so-called dtsk polynomial. It can be com-

pletely characterized by the three conditions
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R (x+iy) = c.(x+iy)m(x—iy)n + polynomial of degree less than

m,n
m + nj
J J R (x+iy)xpyqu dy = 0 if p+q < m + nj
(4.15) Sy ™
X +y <l
Rm,n(l) =1,

See KOORNWINDER [12]. It follows from (4.11) and (4.13) that

L
(4.16) Uyp(Re a) = J-:Z.g Rp_s e (@)

M consists of the reps Ej(je£22) defined by
G.17) FCRIEE L

Let “j N (j €4Z,\e€) denote the principal series rep of G induced by the rep
)

-2i5 2t
W2 Diy e

of MAN, Since Ty has M-content {ij!j=~£,—£+l,...,ﬂ}, we obtain by Frobenius
reciprocity that m.

3.
For p we obtain:

has K-content {T£[£=ljl,|j[+l,...}.

(4.18) o (log at) = 2t,
5. THE GENERALIZED ABEL TRANSFORM FOR SL(2,C)

Write I ,(G) instead of I. , (G), d, := 28+ 1. Note that T, = T
rite .l instead o c,T » dp 3= = . Note that 2= Tpe Nor-
malize the Haar measure on N by dn := (2m) dx dy. Specialization of

(2.3) to G = SL(2,C) yields

x+iy

©

-1 2 ©
5.1) Fo(k,a) = (21) e t f J f(kan, ddx dy, £ e I ,(0).

—c

Eormulas (2.7) and (2.6) can be written as
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2
- 4
(5.2) E(kjak,) = d, m=z-l_ Erm (kK D E (W),
£
- Loy
(5.3) Felk,a) = 4, j=2_£ tjj(k)Ff,j(t),

0
for fin Ic,ﬂ(G)’ From now on we fix £ and I, will mean a sum with m running
through the set {-£,~£+1,...,£}. Let us use the notation

£(o,w) 1= £my a);

F(t,t) := Ff(mT,at),

h]
Then
(5.4) £ = dp [ 7™ ),
m
(5.5) Fr,0) = 4, e o).
J

' o0
Note that, for f € I: K(G)’ the fm's and Fj s are in CQ(IU. The function f
Ed

satisfies an obvious symmetry because of the Weyl group action:
(5.6) £(¢,w) = £(~¢,-w).

Indeed, if f ¢ I:(G) then

f(m¢aw) = f(uﬂ/2m¢awu_ﬂ/2) = f(m_¢a_w).

Next we want to rewrite (5.1) as a "classical" integral transform. An

intermediate stage (essentially the same as in NAIMARK [19, Ch, 3, §9, no.
10]) is as follows:

LEMMA 5.1. If £ € 1. ,(G) then
LEMMA 5.1. e,

2 L £
(5.7) F(6) = e t ([ El fm(w)tjm(uel)tmj (u_ez)zdz,
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where, for given z and t, W, 9, and b, are such that

(5.8) am = uelawu_e .
PROOF,
L, -1
= ‘s dk
Fj(t) IFf(k,at)t”(k )
K
= (2mTe2t dk dx d
= (21r) ff(ka nx+1y JJ(k ) x dy

T
—l 2t

iy
|

]
Re—— A

2
J £ (m_ _y/2 ¢/29‘ n )t. (k- )dk zdz dy
0

[}

[
[
(ad

L . -1
f(katnz)tjj(k )dk zdz

[}
®
N
ot
Re—— O*—8 O——38

f(u_ezku law)t:JJ(k )dk zdg
2t £ -1
= dje I £ (w)t (u_g ku JET (k) dk zdz
Z o m 6,7 7ij
0

- [ fm<w>c§m<uel)tﬁj (o Jatz. O
0 m

A straightforward calculation shows that (5.8) is equivalent to

cos(el—ez) chw=cht,

sin(8,-6,) ch w = -4z et,
(5.9)

cos(61+62) shw=sh t,

sin (e]+62) sh w= 3}z et,

and that it implies
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(5.10) ch2w = ch2t + je2t;2,

The final version of our Abel transform is given in the following
theorem:

THEOREM 5.2, If f ¢ I:’L(G) then
2T

(5.11) F(t,t) = (2m)") J f £(0,w).
0t

U2£<%%1% cos$ cosT + :g ; sin¢ sinr)23h2w d¢ dw

and

(5.12) F(t,t) = F(-1,~t),

PROOF. By (5.7), (5.4) and (4.8) we obtain:

2m

2t £ I £
Fj(t) = iFaz JJ £(d,w) Z tjm(uel)tmm(m—¢)tmj(u—e )d¢ zdz
00 m 2
2t 72
=2 I j f(¢ w)tg.(u m_u_, )d¢ zdz
2ﬂd£ ’ ij el -¢ ~62 *
00

Now, by (5.9), we have

Ug m_¢u_62 = 8

with

o = cos(el-ez)cos ¢ -1 cos(9]+62)51n ¢ =

sh t

£ cos ¢ = i
sh w

C.
ch w

sin ¢.

Hence, by using (5.5), (4.11) and (5.10) it follows that
2me
F(t,t) = 2% (2m”! J f £(6,w).
00
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ch t sht . . .
°U2£<2h - cos¢ cosT + T sing slnr) d¢ zdz
21
= @n! f [ £(0,w).
0ltl
h t sh t . .
. Uzﬁ(gh - C0s$ cosT + sin¢ smT)Zsth d¢ dw.

This shows (5.12) and also (5.11) for t 2 0. Finally, (5.11) holds for t <
. t

because the right hand side of (5.11) with f: replaced by f__t (t>0) equals

0 (use (5.6)). O

Because of (4,11) aud (4.13) we have the following two variants of
(5.11).

27 e
1
(5.13) Fj (T,t) = ?ﬂ‘q J j £(¢,w).
0t

ch t .sh t .
'Rl—j,ll+j(m cos¢ + i 31n¢)25h2w d¢ dw,
<«

(5.14) F(r,t) = d, J 1 E ().

m
m

ch t .sh t _.
'R£+m,£—m(m cosT + i smr)Zsth dw.

For a function F of the form (5.5) (FJ.ECZ(]R)) define
2m e
(5.15) 723,20 := El?r'J f F(r,t)etd Ty ge
0 ~»
joe{-L,-8+1,...,£}, X € °C.’

Then, by Fourier inversion:
0

(5.16) F(t,t) = il?f § F2j,2i0e 2T A gy
2o d

Normalize the Haar measure on A by dat t= dt. and the Haar measure dg on G
by (2.8). It follows by specialization of (2.10) that
«©

-1 ~ 2t o
dp if(g)tr “j,x;ﬂ,l(g)dg = j F_J.(t)e dt, f ¢ Ic,£<G)’
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where we wrote T,

3L, instead of "j y:T,.T,* Hence, by combination with
ERAR Mgt ] ERAR ] ’
(5.5), (5.15) and (5.12): et
(5.17) J f(g)tr “j,A;Z,ﬂ(g)dg = F(23,2)).
G

Formulas (5,17) and (5.11) together will yield an integral representation
for "j,k;ﬁ,LlMXA' We need a few preparatioms.
First observe from (HELGASON [9, Prop. X. 1.17] that, for G = SL(2,Q), -
the left hand side of (2.8) equals
-]
2
c J J J f(klawkz)sh 2w dw dk] dk
0 KK

2
for some positive conmstant c. It follows easily that:

LEMMA 5.3. Let )« CC(G), £, € ¢(6) and let both functions have the form
(5.2). Then

(5.18) J f](g)fz(g)dg = J fl(g)fz(g—])dg -
G G 2 ®
e 2
= 7rd f J fl(m¢&w)f2(m¢aw)sh 2w d¢ dw.
£ 00

By a ¢loser look at the Cartan decomposition G = KAK (cf. HELGASON [10,
Ch. IX, §1]) we obtain:

LEMMA 5.4. Let f—[’f—£+1""’f£ be C”—functions on R with compact support
included in (0,). Then (5.2) with kl’k2 € K, w 2 0 unambiguously defines a
function £ in Ic,L(G)'

Apply (5.18) to (5.17) and use (5.12) and (5.11):

2 ©
c 2 -
2ﬂd£ J I f(p,w)tr Wj,k;t,ﬂ(awm¢)5h 2w d¢ dw =
00
2m
i _2117[ J F(T’t)(eZLJTe—Z)\t+2—213TeZAt)dr dt =
00
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2T
_ 1
T Ir

0

° UZE(ch

l

-}

ijt -2At, =2ijt 2Xt
Jf(‘b’w)f{{ 2ijT -2ht, =2ijT 2Aty
0

(e

o—
oOY——=%

sh t
sh w

t
- cos¢. cosT +

sing sim:)dr dt]Zsh 2w d¢ dw.

The first and the last member of the above equalities are equal to each
other for all f in I: Z(G)' Hence, in view of Lemma 5.4, the expression in

E]
square brackets in the last member will be equal to

¢ sh2w
——Z—‘Q—— tr “j,l;f,,l(awm¢)'

Divide both sides by sh2w and put w = ¢ = 0. We get ¢ = 2. Thus we have

derived:

LEMMA 5.5. If f ¢ C (G) then

1 2t
(5.19) f f(g)dg := —Z—J J j f f(katnx+ Je“Tdk dt dx dy =
G -0 a0 w0

_ 2
=2 j I J' f(klaZkZ) sh 2w dw dkl dkz.
0 KK
THEOREM 5.6. (integral representation).

(o4
=3

1

2ijT -2at, —-2ijT 2t
Jrshiw (e e "ive e

-1
(5.20) dptr nj’“ﬂ’z(mqbaw) = ).

oOY———¢%

o

ch t sh t . .
'UZE<ch w COS¢ cosT + oh w Sind SlnT)dT dt.

6. THE INVERSION FORMULA

In order to invert the transformation £ ~ F given by (5.11) we will

first express f(e) (f I:.Z(G)) in term . Let
I
(6.1) & () := J p§0r2lmh) (o) A lml Mgy
A B
6.2) b i= | ¥™ (cos) (siny)Vay,

0
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(ca,8)

where Pn

denotes a Jacobi polynomial.

LEMMA 6.1. If £ € I:L(G), Rel, Rey > -1 then

——— LY
o dn :

(6.3) f f F(t,t)(ch t cosT)l(sh t sinT)u(chzt—coszr)dt dt =
00

o
= 4dp] a O+b_(h,0) J £ (ch w2 (sh W) ey,
" 0
PROOF. It follows from (5.14) that the left hand side of (6.3) equals

Adz J é cm(l,u)fm(w)(ch w)x+2(sh w)u+2dw,
0

where

e ch t .sh t _.
cn () Rﬁ+m,£—m(€ﬁ_ﬁ cosT + i s1n1).

oV——
o

A . u 2 2
.(ch t cosr) (sh t 51n1) (ch“t-cos t) dt dt =

ch w shw ch wshw

f J R£+m’£_m(x+iy)x)‘yudx dy = a_ ()b (A1)

x2+y2<l
x,y>0

by (4.14). 0O

There is some similarity of formula (6.3) with the formula in
MATSUSHITA [18, p. 115] which is obtained by taking Mellin transforms at
both sides of (2.12). Matsushita could invert his formula and thus, by
taking inverse Mellin transforms, obtain (2.14)., We did not succeed in in~

verting (6.3). However, we can prove:

PROPOSITION 6.2, If f « I: 2(G) then
9

32 32
660 (g LF0,0 - 40,0
ot ot

PROOF. By integration by parts and application of (6.3) we obtain:
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ooi-n

2 82 u
j (—a-— -—-—)F(T t)(ch t cos'r) (sh t sint) dt dt =
0

2 2
0 3T at
Y &11
qulf J Ft,t)[A(A~1)(ch t cost))‘—z(sh t sinT)Ll +
00

- 2
+ u(p=1)(ch t COST))L(Sh t sim’)u 2](chzt:---cos T)dt dt =

Y

[ 2, Oru=2)[uGu=Db (4, u-2) J £ (w) (ch W2 (sh w)Maw +

u

m
- 0
+ A0=1)b_ (=2,1) f £_(w)(ch W (sh w)¥ aw] =
0

L}

4d, g a_ O-2)[((O-1) -4m2)bm(l—2,u) +

m

~2in(0-2)b_(1-3,1+1)) J £ (w)(ch 02 (sh wyPaw +

) 0
+ l(x-l)bm(A—Z,u) J fm(w) (ch w)}\(sh w)w.2 dwl.
0

By analytic continuation in A,u, the first member of these equalities equals

the last member for Re X > 2, Re p > -1, Now let fzhave support inside

2
[0,2n] x [-M,M], then the same holds for (-BL + -37 F. Divide the first and
at=
last member by N
Min
J J (sh t sin‘r)udt dt
00
and let u + ~1. Then we obtain :
22 52 ) 2
(6.5) (——— + ——-)F(0,0) = =44 a_(A=3) (=A+1-4m")f_(0).
312 atz £ n n

Let A > » in this identity. Then

S

(——7 + —-7>F(0,0) = -4d, ] £ (0) = -4£(0,0). D
9T ot m

REMARK 6.3. It is evident from (6.5) that a system of functions {f } deter-

mined byfin]’. £(G) must satisfy certain additional conditions at O In

Prop. 9,1 we w111 make a more preecise statement about this.
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PROPOSITION 6.4. If £ ,f. ¢ 1. ,(G) then
1272 c,L

2T ®
(6.6) J f £,(6,W)E, (6,w)sh 2w d¢ dw =
12"00 32
-3 J J F (T, t)(—-? + ""f)F (t,t)dr dt.
3T ot
PROOF. First observe that (5.18) (with c=2) yields:
2T @
?ng f £, (4,0 E, (6,w)sh’2w dp dw = (£,%£,) (o).
00

Next, by (2.9) and (5.5):

LY

«C L L
f *f (t) f Ffl’j(tl)FfZ’j(t"tl)dCl:

27
1
F (ma) = JJF (m_a, )F, (m a ddt, dt,.
fl*f2 Tt 2nd£0_m fl T tl f2 =T, -ty 1 1
Thus, by (6.4) and (5.12):
(£xEp)(e) = - zl;’ajf * ”%‘)Ff wf, @30 | raemo =
att ety Tthy T HITTEE
| 2T o 32 32
=g J J’ Fl(Tl’tl)(—f + —-2->F2(Tl,t])d‘rl de,.
20—‘» BT] Btl

A second application of (5.12) yields (6.6). 0O

THEOREM 6.5. (inversion formula).
If £ ¢ Ic,ﬂ(c) then

2T w 9 2
_ =1 1 3 3
6.7 £(o,w) = Zsh2w_2.1?f J. ( 7" ”‘Z)F(T't)'
00 T ot
2£(ch cosd cosT + zﬁ t sing s1n‘r)d'r dt.

PROOF, Substitute (5.11) for f = f1 into the right hand side of (6.6) and

interchange the order of integration:
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j J fl(¢,w)f2(¢,w)sh22w d¢ dw =
00

T -1 1 32 3
= J J fl(¢’w)[23h2w —zTr‘ j J(—a-;‘z— + -a-t—z-)Fz(Tst)-
00 00

'UZK(Z; :J cosp cosT + :{: :1 sing sim)d‘r dt]sh22w do dw.
} - ©

For fixed § in 1 (G) this formula holds for allf inI £(G)' By Lemma 5.4
- c,ﬂ Cs

we conclude that (6.7) is valid. 0O

REMARK 6.6. The proof of the inversion formula (6.7) uses the group theore-
tic property that the generalized Abel transform is ean homomorphism with
respect to convolution, We did not sueceed in finding a direct analytic

proof for the inversion formula,

REMARK 6.7. Prop. 6.4 implies that £ » F

already knew from Theorem 2.2 (ii).

3 - . 3 © .
¢ is injective on Ic,L(G)’ which we

_COROLLARY 6.8. If f ¢ I: 2(©) then
’

0

(6.8) fle) = % Z J [ J f(g)tr il z(g-l)dg](kz’rjz)dk.
J O G 9’ s i)

PROOF. It follows from (5.16) that

®

2 .2
(_a_i + —a—z)F(0,0) = - 257! f 5 F23,2i0) 02+5%)da.
3t ot j

o d

Now substitute (6.4) and (5.17) into this formula and use (5.12). 0

The above corollary immediately implies the Plancherel formula for
SL(2,C). This formula was first obtained by GELFAND & NAIMARK {41, see also
the very readable proof (for SO_(3,1)) in TAKAHASHI [21].

7. CHARACTERIZATION OF THE IMAGE OF THE GENERALIZED ABEL TRANSFORM

Let AE denote the image of I: Z(G) under the transform f » F, We al-
’
ready know that all F in A.E have the form (5.5) with Fj in C:(]R) and that
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F satisfies the symmetry (5.12). Now we will derive an additional condition
satisfied by each F in A,.

PROPOSITION 7.1. If F € A, then

(7.1 E(Zp,Zq) = F(2q,2p), D, q e{=€,-L+1,00.,8}. .

PROOF. We will prove that

(7.2) tr ﬂp,q;ﬂ,l(m¢aw) = tr “q,p;ﬂ,l(m¢aw>’ P, q e{-£2,-8+1,...,2}.

By (5.17) and Lemmas 5.3, ‘5.4 -this is equivalent to the proposition. It fol-
lows from (5.20) and (4.16) that

-1
dp (3T q30,2 (M) ~ EXTg oip p@ia)) =
2T w

_ -2im¢ -1 ch t .sh t .
= 2 e m [ f J R£+m,£—m(EF—§ cosT + i 51nT>.
w 00

. e2ipT-2qt + e—zipr+2qt _ eZiqT—Zpt _ e—21qr+2pt dr dt .
2sh2w

The part in square brackets, with new integration variables

% = ch t cost _sht
ch w » Y

s Sint,
equals
J J R£+m,£_m(x+1y)fp,q(T,t)dxdy,
x2+y2<l
where
._ ch(2ipt-2qt)-ch(2iqt=2pt)
fp,q(T’t) o ch2t-ch2it °

Now, by using the recurrences
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ch(t+i-r)fp’q(-c’t) = %(fp+£,q—i(1’t) + fp—i,q+£(T’t))

ch(t-ir)fp’q(ut) = %(f ’q_,_%(‘f,t) + fp_%,q..%(l"t)’

p+i
together with

ch(t+it) = x ch w + iy sh w,

ch(t-it) = x ch w = iy sh w,

we concludd that fp q is a polynomial in x,y of degree 2lplviql~1. Now use
k]

the orthogonality property of the disk polynomials Rﬁm,l-m(X+iy)' 0

DEFINITION 7.2. Let BZ be the space of all functions F on [0,21] x R of the

form
-2ijT
F(t,t) = Z e Fj(t)’
J

with Fj € C:(]R) (Ge{-L,~L+1,...,2}), such that
1) F(t,t) = F(-1,~t),

(ii) F(2p,2q) = F(24,2p) (p,q ef~L,~L+1,...,2}).

Clearly, Aﬂ c B£ (cf. (5.5), (5.12), (7.1)). If F e B?_ then define the

function E, on [0,27] x R by

(7.3) EF(qb,w) := RHS of (6.7).

. ® = =
Thus, if f € Ic,[_(G) and F := Ff fIMXA

ping F & EF is a bijection of B[_ onto I: £(G) (restricted to MxA). Thus it
b

will turn out that Aﬂ = Bﬂ'

then EF . We will show that the map—

PROPOSITION 7.3. Let F ¢ B,, f := EF' Then

2

2m

2 2

(7.4) £(0,W) = 5t o f (3ﬁ74-117)y(r,t).
0 ot

2sh2w 2w

€38
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ch t
‘Uzﬁ(ch 5 COos¢ cosT + :i :; sing sin-c)dr de,

and £ is the restriction to M x A.of a funetion £ on G belonging. to 1‘ (G)
and given by

1
(7.5) f(g) = éTﬁE i F(2j,2iMer Ti,inL, f_(g)(x +i%)dx.

PROOF. (7.4) follows from (7.3) because of condition (i) of Definition 7.2
and because

21 @

22 22 ch t h
J' J (a 5 2)F('r t)U ( R cosd cosT +—:—h—-—% sing sim)dr dt=0.
D e 3T ot

To prove this identity, observe that

sh t . .
cos¢ cosT +
o v ¢ T P sin¢ sint

ig invariant under (t,t) = (it,-it) and that UZE(_X) = (—1)2£U21_(x), so
UZ{’,(“') is multiplied by (-1)2'& under T + 1T + 7. Hence UZ?_("') is a finite

linear combination of terms e21p't 2qt e21qre2pt(p,q e{-L,~8+1,...L}) with

+

coefficients depending on ¢,w. Now if we write

2 2 .
(..3_2. + —3—7>F(T,t) = D E (0 T,
T 3t m

then condition (ii) of Def. 7.2 implies:

J Hp(t)ezqtdt = - J Hq(t)ethdt,
R R
and our claim is clear.

Formula (7.5) is proved for g ¢ MA by substituting (5.16) into (7.3)
and next combining this with (5.20). Now observe that A - §(2j,21)\) is ra-
pidly decreasing (je{-£,-f+1,...,£)}), since F ¢ CZ([O,ZW]XIR), and that, by
(2,11), all partiel derivatives w.r.t. g of the function
(A,g) » tr '!TJ ire, z(g) exist and are of polynomial growth in A. Hence
(7.5) d<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>